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1. Abstract
In most data applications, statisticians must identify and
estimate outlier effects.  When doing seasonal adjustment,
we are concerned that outliers may interfere with
estimation of seasonal effects.  By removing outlier effects,
we hope to produce the best possible seasonal adjustment.
The autocorrelation structure of time series differs from
that of other types of data, so the outlier selection
techniques also must be different.  Using a large sample of
economic time series from the U.S. Census Bureau, we fit
regARIMA models (regression models with ARIMA
errors) to the data with the X-12-ARIMA seasonal
adjustment program.  Our research simulated production as
we added data one month at a time, refitting the regARIMA
models for each run.  We looked at the performance of
automatic outlier identification when we raised or lowered
the critical value, and we compared that to visual outlier
selection methods.  We expected our visual selection
methods to improve on automatic outlier identification, but
we concluded that the current automatic identification
procedure was generally the best method.

After presenting background material, we describe our
outlier identification methods, explain the regARIMA
model diagnostics for the method comparison, and give our
results.

2. Background
2.1 X-12-ARIMA
The Census Bureau uses a program called X-12-ARIMA to
produce seasonally adjusted data.  X-12-ARIMA is the
most recent seasonal adjustment program in the X-11 line
(Findley, Monsell, Bell, Otto, and Chen 1998).  It follows
X-11, developed at the U.S. Census Bureau, and X-11-
ARIMA and X-11-ARIMA/88, developed at Statistics
Canada.

One major improvement of X-12-ARIMA over X-11
is the use of regARIMA models— regression models with
ARIMA errors—to estimate calendar effects or outlier
effects with predefined or user-defined regressors.
X-12-ARIMA uses regARIMA models to preadjust a series
before seasonal adjustment by removing effects such as
trading day, moving holidays, and outliers.

X-12-ARIMA has four predefined outlier types that
users can specify as regression variables:  a) additive
outlier (AO), also called a point outlier, appropriate when

one data point is unusual; b) level shift (LS), used when the
level of the series changes suddenly; c) temporary change
(TC), like an AO except that the effect is strong in one
month and fades away exponentially in following months;
and d) ramp, used when the level of the series changes
more gradually—like an LS effect spread over a few
months.  Although users can specify ramps in the
regression, the X-12-ARIMA automatic ou tlier
identification procedure can identify only AOs, LSs, and
TCs, so we used only these three types in this research.

X-12-ARIMA's automatic outlier identification
procedure selects outliers by comparing regressor t-values
to a critical value.  The user can set a critical value or use
the program's default value.  Under the default settings,
X-12-ARIMA adds one outlier at a time to the model.  For
each month of data, X-12-ARIMA calculates t-values for
each type of outlier that the user has asked for (in this case,
AO, LS, and TC).  If at least one t-value has an absolute
value greater than the critical value, the program adds the
regressor (by type and date) for the outlier with the
maximum absolute t-value, then recalculates the model
estimates and outlier t-values.  The program repeats the
process of comparing absolute t-values to the critical value
and adds outlier regressors one at a time, after each
estimation of the model, until it finds no more absolute t-
values that are greater than the critical value.  During the
identification phase, the program uses a robust estimate of
the variance.  When it cannot identify any additional
outliers, it starts a backward deletion phase.  After
estimating the model including all identified outliers in the
model, if at least one t-value of the model's outlier
regressors has an absolute value less than the critical value,
X-12-ARIMA removes the outlier regressor with the least
significant t-value and estimates the model again.  The
program continues to remove outliers one at a time as long
as at least one has an absolute t-value less than the critical
value.  During backward deletion, X-12-ARIMA uses the
usual (nonrobust) residual variance estimate.  The
difference in variance affects the t-values, making the final
values different from those calculated during the
identification phase.

2.2 Strategies for Outlier Selection
One of the best strategies for selecting outliers in time
series is to identify sources of outliers, such as strikes or
severe weather.  Such events are reason to add an outlier
regressor to the regARIMA model, at least provisionally.
However, without sufficient knowledge of the series it may
not be possible for this type of intervention, so the
automatic outlier procedure becomes very useful.  With
this procedure though, there are several different strategies
for setting the critical value.

X-12-ARIMA sets the default critical value
automatically according to the length of the series.  This is
a reasonable approach because the comparisons to the



critical value involve several t tests, and the significance
depends on the number of data points (Ljung 1993).

Another choice of critical value involves a threshold
analysis.  Using an automatic outlier identification
procedure, the user completes several runs, each time
lowering the critical value by a small amount (say 0.1),
until the procedure identifies too many outliers (as
determined by the user).  The final critical value is the
threshold just greater than the value that produced too
many outliers.  In the past we have seen examples where
lowering the critical value this way improved the modeling
diagnostics.  In practice, it takes too much time because the
user must run the program many times for each series.

In typical regression analysis, with independent data
(that is, not time series data), plotting residuals from the
regression can help identify outliers.  Although we use
regression with time series data, we cannot use the same
method.  Because X-12-ARIMA computes t-values for
each outlier type for every month we can use those t-values
to identify likely outliers.  We plotted the maximum
absolute t-value for each month.

Figure 1.  Maximum Absolute T-value
(Critical Value = 99.0)

Grid Lines at January
Circle is AO, Plus Sign is LS, Triangle is TC

Figure 1 shows the absolute t-values that resulted from
an X-12-ARIMA run in which we set the critical value very
high so we would not identify any outliers.  The values
range from very close to zero to greater than five.

Figure 2.  Maximum Absolute T-value
(Critical Value = 3.877)

Grid Lines at January
Circle is AO, Plus Sign is LS, Triangle is TC

Figure 2 shows results for the same series after
running X-12-ARIMA with the default critical value
(3.877).  Because X-12-ARIMA assigns a t-value of zero to
identified outliers, generally they will not appear in the
graph.  In this case X-12-ARIMA identified January 1990
as a TC and set the t-value to zero, so the AO t-value is the

maximum for January 1990.  After looking at Figure 2, a
user may decide to add an AO regressor at June 1999, as
that t-value stands out from the rest of the graph.

3. Methods
3.1 All Methods
For this study we chose 206 United States Import/Export
monthly time series that the Census Bureau's Foreign Trade
Division (FTD) adjusts for seasonality.  For some series, a
simple model fits well.  Others require complicated
models, and outliers are often an important part of the
model.  Outliers can be caused by outside influences (such
as a sudden rise in oil prices) or may result from definition
changes as required by the Bureau of Economic Analysis.

Once a year, FTD staff members carefully model the
series.  We used their regARIMA models, excluding their
outlier choices, as we identified outliers independently.
Because we used predetermined regARIMA models, our
resulting outlier choices were biased.

We looked only at individual series diagnostics, not at
diagnostics for the resulting aggregate series, such as Total
Imports, Total Exports, and Balance of Trade.

Our initial run included data from January 1989 to
August 2000.  We performed subsequent runs adding one
month of data each time.  These subsequent runs included
revised data for the previous endpoint plus one month of
preliminary data with the exception of the September 2000
data set.  Unfortunately, we did not have original
preliminary September data, so that data set included
revised September values.  Our final run included data
from January 1989 to January 2001.  We wanted to see how
well the different outlier identification methods performed
under conditions simulating production.

We devised outlier selection methods that we
designated by letter, A - D.  We also included a method
with no outliers (Method Z).  For all the methods, we set
the initially-identified outliers to be regression variables for
all subsequent runs.  For subsequent runs we added a
month of data and then ran X-12-ARIMA including the
initial outliers as part of the model.  We did not change the
regARIMA model settings between runs.  In addition to
setting initial outliers, we performed automatic outlier
identification on the full data span, although critical values
differed from method to method.

3.2 Method Z:  Zero Outliers
Method Z was not an outlier identification method, but for
purposes of comparison we ran X-12-ARIMA with the
automatic outlier identification procedure but a very high
critical value (99.0).  We wanted the results of outlier
identification but no outliers.  We used the results of
Method Z for other methods.  We graphed the t-values
from the initial run of Method Z for Methods A and C.

3.3 Method A:  Visual Outliers
From the maximum absolute outlier t-value graphs
resulting from Method Z, we subjectively identified visual
outliers without regard to the magnitude of the t-values.
After adding regressors to the model for those visual
outliers, we ran X-12-ARIMA for the initial data set and
then for subsequent data sets.



This method became complicated when we put it into
practice.  For example, some series had neighboring
outliers that made selection more difficult.  Our solution
was quite naive:  when selected TCs or LSs occurred only
one month away from another identified outlier of any type,
we selected the outlier with the greater absolute t-value.
We selected both outliers if they occurred two or more
months apart.  For series with several neighboring outliers
including TCs and LSs, we selected the outlier with the
greatest absolute t-value.  However, we included all
selected neighboring outliers if they were all AOs.  Our
predetermined outlier set (that we set to be regressors)
resulted from applying this neighboring-outlier principle to
the earlier selections.

The actual outlier set for each run consisted of our
predetermined outliers and outliers that X-12-ARIMA
identified automatically.  We allowed automatic outlier
identification because we were concerned that identifying
some outliers would affect the significance of other t-
values that were not obvious in the graphs.  We did not set
any of the automatically identified outliers to be regressors.
The critical value for automatic identification was the
maximum of the default critical value and the visual critical
value (described under Method C).

3.4 Method B:  Automatic Outlier Identification
We ran X-12-ARIMA for all series using the automatic
outlier identification procedure with the default critical
value.  The only difference from the default settings was
that we identified TCs as well as AOs and LSs.  We added
regressors for the identified outliers and ran X-12-ARIMA
for the subsequent data sets.  We used the default critical
value for automatic identification.

3.5 Method C:  Visual Critical Value
From the same graphs we used for Method A (resulting
from Method Z), we set a visual critical value, a subjective
choice of the value at which t-values begin to look like
outliers when compared to other values in the graph.  We
set the value without regard to magnitude, with the
constraint that the new critical value must be 3.0 or more.
We ran X-12-ARIMA for the initial data set for each series
using the new visual critical value, added regressors for the
initially identified outliers, then ran X-12-ARIMA for
subsequent data sets.  We used the new visual critical value
for automatic identification.

We allowed only one decimal place for our critical
values, so none equaled the default critical values.  Six
times we chose 3.9 as the visual critical value, essentially
equal to the default value for the initial run (3.877).

3.6 Method D:  Visual Outliers After Automatic
Identification

Method D was a combination of Methods A and B.  X-12-
ARIMA identified outliers for 91 series in the initial run
for Method B.  For those series we graphed the resulting
maximum absolute t-values.  (Because X-12-ARIMA
assigns a t-value of zero for every identified outlier, the
resulting graphs don't have extremely large t-values.)  We
identified visual outliers and set those to be regressors (in
addition to the outliers previously identified).  For the

series with visual outliers we ran X-12-ARIMA again for
the initial data set and then for subsequent data sets.  We
used the default critical value for automatic identification.

Of the 91 series with outliers in Method B's initial run,
we identified visual outliers in only eight series; the other
83 duplicated Method B.  For the remaining 115 series,
Method D duplicated Method A.

3.7 Program Information
All of our regARIMA model estimates are from X-12-
ARIMA version 0.2.8 for PC, dated May 16, 2001.

We used several SAS® programs to complete this
research.  Most prominently we used X-12-Graph (Hood
2001), a companion program to X-12-ARIMA that is
written in SAS.  X-12-Graph produced all of our t-value
graphs and forecast error history graphs.  We wrote
additional SAS programs to automate and organize outlier
identification.  One program inserted our visual outliers, or
for Methods B, C, and D the initially identified outliers,
into the X-12-ARIMA input specification files as
regression variables.  The same program ensured that we
used the appropriate critical value for automatic
identification.  We stored our selections in SAS data sets
for easy comparisons.

4. Diagnostics to Determine Best Method
4.1 Model adequacy
To determine regARIMA model adequacy, we used
familiar model adequacy diagnostics:  spectra and Ljung-
Box Q statistics.

Spectrum diagnostics indicate the presence of seasonal
or trading day effects in a series.  For monthly series,
seasonal frequencies occur at k/12 cycles/month for
1 # k # 5.  We can detect trading day effects at frequencies
0.348 and 0.432 cycles/month (Cleveland and Devlin
1980).  Spectrum graphs mark these frequencies for easy
detection of the effects.  A significant peak in the spectrum
graph of the regARIMA model residuals at any of the
seasonal or trading day frequencies is a signal of possible
residual seasonality or trading day effects and can signify
a lack of model adequacy.  We quantify significance in
units called stars.  A peak of six or more stars is considered
visually significant (Findley et al. 1998).  X-12-ARIMA
produced our estimates of the spectral peak sizes.

For us, failure of the residual seasonality test was a
peak of six stars or more at k/12 cycles/month for
1 # k # 4.  We limited failure to those frequencies because
5/12 does not occur at a natural division of the year like the
other seasonal frequencies.  We did not want series to fail
the diagnostic based solely on that frequency.

We also looked for trading day peaks.  Because
frequency 0.432 is considered appropriate for inventory
series, we chose not to use it with our series.  We looked
for peaks only at frequency 0.348.  Staff members in FTD
have spent much time determining whether or not each
series needs a trading day adjustment.  Looking for trading
day peaks was only to see which outlier set better
supported the FTD decision.

In addition to spectrum results, we used the Ljung-Box
Q diagnostic.  Ljung-Box Q statistics are Chi-square lack-
of-fit statistics for model residuals based on the



autocorrelation function.  Lags with a p-value less than
0.05 can indicate a lack of fit for the model.  The most
important lags are seasonal lags (12, 24, 36, etc. for
monthly series) (Ljung and Box 1978).  For us, failure was
either a) a significant Q statistic at lag 12 or b) ten or more
significant Q statistics for lags 1 through 24.

4.2 Outlier T-values and Additional Outliers
We expected the best outlier identification method to
produce outliers that continued to be significant over time.
The critical value was our significance measure.

The critical values corresponded to the identification
method.  For Methods B and C we had a critical value that
we had used for outlier identification.  For Method B that
was the default critical value, and for Method C it was the
visual critical value.  The X-12-ARIMA default critical
value changes with the addition of data points, so the
measure for Method B changed with each added month of
data.  Methods A and D were somewhat different because
we set visual outliers to be regression variables, not using
a critical value for all identification.  A logical measure for
Method A was the visual critical value because we had
chosen that value from the same graphs that we used to
choose outliers for Method A.  Method D did not have a
definite critical value because we used the default critical
value to identify most of the initial outliers, but t-values for
the visual outliers were likely less than that critical value.
(Exceptions could occur because of the different variance
used in the identification and backward deletion steps.)
Our significance measure for Method D was the minimum
of the visual critical value and the default critical value.

In addition to checking significance of the outlier t-
values over time, we looked at how sufficient the
identification methods were.  In production work, we
normally use automatic outlier identification only for data
that we add to the end of the time series.  In our research,
however, we used the automatic procedure to check how
often X-12-ARIMA identified additional outliers within the
initial model span.  We would expect a good identification
method not to select many additional outliers in the span
that has already undergone outlier identification.

4.3 Forecast Performance
Some users consider forecast performance to be the most
important criterion when choosing between competing
regARIMA models.  Forecast performance is important
because in the current context of X-12-ARIMA, the
regARIMA model adjusts series for regression effects like
trading day and outliers but also provides forecasts for use
with the symmetric X-11 seasonal moving averages.

X-12-ARIMA can compute a forecast error history
from the regARIMA model estimation on a sequence of
runs from truncated data sets (Findley et al. 1998).  We can
compare forecast errors of different models over time.

Let Yn be a time series defined for n = 1, 2, ... ,T.

 is the h-step-ahead forecast of Y calculated using Y1,

Y2, ... , Y t , where t # T.  Because we use only the data up to
time t to estimate the model coefficients and to calculate
the forecast, it is an out-of-sample forecast.  However, we
also know the true value for Y t+h , for t # T ! h.

Figure 3.  Out-of-sample Forecast Error Illustration

1 t t + h
= forecast for time t + h given data up

to time t

1 t t + h T
Y t+h = actual data for time t + h

Because we know the true value, we can compute the

forecast error, Y t+h ! , for t0 # t # T ! h, where t0 is

the initial truncation point.
X-12-ARIMA can calculate forecasts for many

overlapping time series, starting with the series that begins
at the first point of data (time 1) and ends at some point t0

and continuing through the series that begins at time 1 and
ends at T ! h.  Each subsequent time series has one
additional point of data at the endpoint (t0 + 1, t0 + 2,...,
T ! h).  X-12-ARIMA estimates the model parameters for
each time series of time 1 to time t, t0 # t # T ! h.

To compare two models, let  be model i's h-step-

ahead forecast of Y t+h at time t, i=1, 2.  The squared errors

are (Y t+h ! )2 for Model 1 and (Y t+h ! )2 for

Model 2.
For given h and t0, we can plot cumulative sums of the

differences of the forecast errors over time.  We plot

versus N, for t0 + h # N # T, where N ! h is the endpoint of
each truncated time series.  Figure 4 shows the 1-step-
ahead forecast errors (solid line) and 12-step-ahead forecast
errors (dashed line).

Figure 4.  Forecast Error Performance
Method C ! Method A

Grid Lines at January

A persistently decreasing graph with increasing N (as
seen in Figure 4) means that , the quantity we are
adding to the sum, is negative.  Negative quantities mean
that errors from Model 2 are generally larger than errors
from Model 1.  We prefer Model 1 because it produces
better forecasts (Method C in Figure 4).

A persistently increasing graph with increasing N
means that we prefer the forecasts from Model 2.

This diagnostic is not always conclusive.  It depends
on the forecasts but also on user judgment of how
persistent a graph's increase or decrease is.



5. Results
5.1 General Model Adequacy Results
The new visual methods (A, C, and D) were not better than
the automatic method (B) according to the model adequacy
diagnostics.

We limited our comparisons to include only the series
that had different outlier sets for the different methods.  Of
course, there were similarities among the methods.  For
23% of the series (48 of 206) no method identified any
outliers for any of the data sets, so we did not include those
in any comparisons.  For the remaining 158 series, we
compared methods, including Method Z, to see how many
series failed the spectrum diagnostics (residual seasonal
effects and trading day effects) and the Ljung-Box Q
diagnostic.  For further comparisons, excluding Method Z,
we used 122 series, eliminating 36 series that had the same
outlier set for every identification method (that is, given a
particular data set, all identification methods selected the
same outliers).  Recall that our initial run included data
from January 1989 to August 2000 and our final run
included data through January 2001.

5.2 Spectrum Diagnostic
The spectrum diagnostics of the regARIMA model
residuals did not differ much among methods.  Where there
were significant differences, no method bettered Method B.

Table 1 shows the number of failures for each method.
A Chi-square goodness-of-fit test of the results of the initial
run (158 series) showed that at the 95% confidence level,
Method B had significantly fewer failures than Methods C
and Z.  However, in the final run, no methods were
significantly different at the 95% level.

The pattern was similar for the 122 series with outlier
differences (excluding Method Z).  For the initial run, the
number of failures under Method C was significantly
higher than under Method B (95% level), and Method A
failed more often than Method B at the 90% level.  For the
final run, Method C had significantly more failures than
Method B at the 95% level, but this was the only
significant difference.

The identification methods were not significantly
different in number of trading day spectrum diagnostic
failures when including Method Z (158 series).  When
comparing the 122 series with outlier differences, for the
initial run, no method was significantly better than Method
B.  For the final run there were no significant differences
among the methods.

Table 1.  Seasonal Spectrum Diagnostic Failures,
Number of Series by Method

A B C D Z

Initial Run
158 Series

17
11%

12
8%

20
13%

15
9%

21
13%

Final Run
158 Series

25
16%

21
13%

28
18%

24
15%

25
16%

Initial Run
122 Series

14
11%

9
7%

17
14%

12
10%

-

Final Run
122 Series

20
16%

16
13%

23
19%

19
16%

-

5.3 Ljung-Box Q Diagnostic
The Ljung-Box Q diagnostic showed more differences
among methods than the spectrum, but not in favor of the
new visual methods.

Table 2 shows Ljung-Box Q failures.  Chi-square
goodness-of-fit tests showed that for the initial run, at the
95% confidence level, only Method B had fewer failures
than Method Z.  Methods A and D had fewer failures than
Method Z at the 90% level.

For the final run (158 series), all identification
methods were significantly better than Method Z.  We
expected outlier identification to improve model fit, so the
comparison to Method Z in the final run was not
surprising.  We were disappointed that the initial run did
not have this result.

When comparing the 122 series with outlier
differences, Chi-square tests showed that for the initial run,
at the 95% level, Method C had more failures than Method
B.  In the final run, Method A had more failures than
Method B at the 90% level.

Table 2.  Ljung-Box Q Diagnostic Failures, Number
of Series by Method

A B C D Z

Initial Run
158 Series

8
5%

6
4%

10
6%

8
5%

14
9%

Final Run
158 Series

8
5%

5
3%

6
4%

6
4%

16
10%

Initial Run
122 Series

6
5%

4
4%

8
7%

6
5%

-

Final Run
122 Series

6
5%

3
2%

4
3%

4
3%

-

5.4 Outlier T-value Results
In production work, when we add outlier regressors to a
model, we are never certain that the regressors will
continue to be significant as we add data.  We included this
concern as one of our comparisons.  Our significance
criteria were the appropriate critical values as discussed in
Section 4.2, Outlier T-values and Additional Outliers.

Even the initial runs of Methods A and D contained
some outlier regressors with nonsignificant t-values.  There
are a few reasons for this result:  a) we didn't use a
backward elimination step with Methods A and D, b) the
difference in variances between what X-12-ARIMA uses
initially for the t-values that we saw in our graphs and what
it uses for the final model estimation can cause enough
difference that the t-values are no longer significant,
c) adding even one outlier can change the model fit enough
that other observations that initially seemed to be outliers
are no longer unusual, and d) our approach to neighboring
outliers caused too many AOs in some models.

In the initial run, of the 122 series with different
outlier sets, under Method A, 31 had at least one absolute
t-value less than the critical value; 13 series failed this test
under Method D.

Table 3 shows that in the final run, Method A had the
most series (32) that failed this significance test.  Of those
32 series, 28 had failed in the initial run (three series failed



initially but passed in the final run).  Method D had 17
failing series in the final run; 12 of those failed in the
initial run.  Surprisingly, Method B had only one series
with nonsignificant outlier regressors.  That series had one
outlier that failed by less than 0.005.  We expected a few
outliers to fall below the critical value over time, so the
result for Method B seemed exceptional.

Table 3.  Outlier Regressor T-values Failures in Final
Run, Number of Series by Method (of 122 Series)

A B C D

32
26%

1
1%

4
3%

17
14%

5.5 Additional Outliers
We also wanted to know how many additional outliers we
would identify in the original span of data as we added
more data.  These additional outliers were the result of
X-12-ARIMA's automatic identification procedure.  We
counted newly identified outliers at any month from
January 1989 (the start of the data span) up to May 2000
(three months before the endpoint of the initial data span).
For some series X-12-ARIMA selected outliers in one run
but not in the next.  Looking just at the final run, Table 4
shows that by this measure, Method D is the most
sufficient method, different from the other methods at the
95% level.  It makes sense that Method D would be
somewhat lower in additional outliers because it is the
combination of two outlier identification methods, but this
was a positive result for Method D.

Table 4.  Additional Outliers Identified in Final Run,
Number of Series by Method (of 122 Series)

A B C D

12
10%

15
12%

18
15%

5
4%

5.6 Forecast Performance Results
Aside from the sufficiency measure shown in Table 4, our
diagnostic comparisons indicated that Method B was the
best of our methods.  Our final comparison was of forecast
performance of Methods B and D.  We eliminated series
that had the same outlier sets, leaving us with 72 series for
the initial run and 69 series for the final run.  We counted
only the series whose models passed the model adequacy
diagnostics (spectrum and Ljung-Box Q) under both
methods.  We counted final runs if they passed the
diagnostics even if they had failed during the initial run.

As Table 5 shows, for the initial run we selected
Method D as having a better forecast performance more
often than Method B.  We also found many graphs to be
inconclusive.  A Chi-square goodness-of-fit test indicates
that the preference for Method D is significant at the 95%
level.  Many of the choices were close.  If we consider the
15 questionable choices to be inconclusive, we preferred
Method B 10 times and Method D 11 times.

The preferences were not significantly different in the
final run, whether or not we included questionable
decisions.  The initial positive result for Method D didn't
hold up over time well enough for us to recommend it.

Table 5.  Out-of-Sample Forecast Error Comparison,
Preferred Method

B D inconclusive

Initial Run
55 Series

14
25%

22
40%

19
35%

Final Run
49 Series

13
27%

17
35%

19
39%

6. Conclusion
We expected that we would be able to improve on Method
B, the automatic outlier identification method, by paying
closer attention to the outlier selection and using new
identification methods.  We expected several examples of
improved model performance in the FTD series.  We
expected especially good results from Method D because
it combined the automatic method with our new visual
identification method.

Because our visual methods included subjective
choices, others who use similar methods may achieve
different results.  However, the automatic procedure proved
itself against our implementation of the visual
identification methods.  The fact that the procedure
requires little additional work from the user makes the
decision even easier.  Users who have detailed information
about a series to know what interventions are needed
should use that information.  In this research we did not
have that kind of knowledge, and we are comfortable
concluding that the current automatic identification method
is the best of the methods we compared.
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