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Different estimates of the seasonal effects in an
economic time series can arise from different choices of the
options in the seasonal adjustment software.  Or, with an
aggregate series, different estimates can also result from
different choices of the level of aggregation at which
seasonal adjustment is performed.  One purpose of this paper
is to illustrate some issues that arise in the seasonal
adjustment of aggregate series.  A second focus is to
describe some useful ways of detecting adjustment
inadequacies and assessing the quality of the adjustments.

We will discuss what makes an acceptable seasonal
adjustment and how to look for signs of inadequacy in the
adjustment, particularly with aggregate series.  We will also
discuss briefly some diagnostics for judging the quality of
the adjustment.  We will show why it may not be useful to
analyze the ratio or difference of the direct and indirect
adjustments.

1. Definitions
Seasonal adjustment is the process of estimating and

removing the seasonal effects from a time series.  Seasonal
factors are obtained from procedures that decompose the
time series into seasonal, trend-cycle, and irregular
components.  Most economic time series are decomposed
using a multiplicative decomposition, so the seasonal factors
are divided out of the original series.  An additive adjustment
is appropriate for some series, in which case estimated
seasonal factors are subtracted from the original series.

The most fundamental requirement of a seasonal
adjustment, regarding quality, is that there be no estimable
seasonal effect still present in the seasonally adjusted series.
The presence of estimable seasonal effects in either the
seasonally adjusted series or the detrended seasonally
adjusted series (i.e, in the irregular component) is generally
what is referred to as residual seasonality.

When appropriate, seasonal adjustment also  includes
adjustment for other largely predictable calendar effects,
most often trading day effects, which are effects due to
weekly activity cycles.  We will not discuss trading day
effects and their estimation in this paper.

When a time series is a sum (or other composite) of a
set of series in which each series is seasonally adjusted, we
can sum the seasonally adjusted component series to get a
seasonally adjusted aggregate series.  This kind of
adjustment is called an indirect adjustment of the aggregate
series. The alternative is the direct adjustment obtained by
applying the seasonal adjustment procedure directly to the
aggregate data.  For example, when we seasonally adjust
export series at the individual end-use-code level and then
sum the adjustments to get Total Exports, we have an
indirect   adjustment   of   Total  Exports.     If   we  sum  the
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individual series first to get Total Exports and then
seasonally adjust the total, we have a direct adjustment of
Total Exports.

Under most circumstances, the direct and indirect
adjustments for an aggregate series are not identical.  There
are some very limited situations in which the direct and
indirect adjustments could coincide, particularly if the
adjustments are additive.  For a multiplicative
decomposition, the conditions required for identical
adjustments are even more restrictive.  For more information,
see Pfefferman, Salama, and Ben-Turvia (1984).

2. Diagnostics for Direct and Indirect Adjustments
Whether or not direct or indirect adjustment is better for

a given set of series depends on the set of series in question
(Dagum, 1979, and Pfefferman et al, 1984).  Generally
speaking, when the component series that make up the
aggregate series have quite distinct seasonal patterns and
have adjustments of good quality, indirect seasonal
adjustment is usually of better quality than the direct
adjustment.  However, when the component series are noisy
but have similar seasonal patterns, then summing the series
may result in noise cancellation, and the direct seasonal
adjustment is usually of better quality than the indirect
adjustment.  In other situations, it is not clear a priori which
adjustment will be better.

How do we know if it's better to use direct or indirect
adjustment for a given set of series?  How similar do the
component series need to be in order for direct adjustments
to be of superior quality?  If the component adjustments are
acceptable, will the indirect adjustment always be acceptable
as well?  The best way to answer these questions is to look
at diagnostics.

The Census Bureau uses its X-12-ARIMA software to
produce seasonally adjusted numbers.  X-12-ARIMA and its
predecessors, X-11 and Statistics Canada's X-11-ARIMA,
are widely-used seasonal adjustment programs.  One of the
major improvements of X-12-ARIMA is its additional
diagnostics.

2.1 Features of a Quality Adjustment
As mentioned above, a lack of residual seasonality is the

most fundamental requirement of a good quality seasonal
adjustment.  Other important qualities of a good adjustment
are lack of bias in the level of the series and the stability of
the estimates.  Lack of bias in the level means that the local
level of the series will be similar for both the original series
and the seasonally adjusted series.  Stability of the estimates
means that as new data are added and incorporated into the
estimation procedure, the revisions to the past estimates are
small.  Large revisions can indicate that the original
estimates are misleading or even meaningless.

There are other features that may be desirable in an
adjustment.  Some users may prefer a smoother adjustment
to aid in detecting turning points.  However, it is important
to remember that achieving such desired features can conflict
with the quality requirements mentioned earlier.  For
example, the smoother of two adjustments may also be the



one that is more susceptible to large revisions as future data
become available and are included in the adjustment
calculations.  Some users may find an adjustment with large
revisions to be unsuitable.  Therefore, it is important to
balance all the qualities and features desired.

It is important to always check the quality of the
adjustment.  This applies to the direct and indirect
adjustments, as well as the adjustments of all the component
series.  We will give examples later in the paper to show the
importance of diagnostics.

2.2 Diagnostics for Residual Seasonality
One of the most important diagnostics is the spectral

diagnostic for residual seasonality and trading day, examples
of which will be given in this paper.  For series that are long
enough, the Census Bureau encourages users to look at this
diagnostic to see if there are any residual calendar effects.

The spectrum of an observed time series shows the
strength, or amplitude, of each frequency component when
the data are decomposed into such components.  For a
monthly series with a strong seasonal effect, the spectrum
will have especially large amplitudes at the frequencies
associated with components that repeat every year, i.e., every
twelve months, every sixth months, every three months, etc.
Therefore, for monthly series with a strong seasonal effect,
we will see peaks in the spectrum at frequencies  k/12 cycles
per month, for 1� k � 6.  For a quarterly series with a strong
seasonal effect, we will see peaks in the spectrum at the
frequencies ¼ cycle per quarter and at ½ cycle per quarter. 
In X-12-ARIMA, spectral peaks are measured in units called
"stars" with six stars being labeled as "visually significant."
For more information, see Findley, Monsell, Bell, Otto, and
Chen (1998) and Soukup and Findley (1999).

With inadequate seasonal adjustments that contain
residual seasonality, the residual effects are usually rather
weak, and it is necessary to remove any very strong
frequency components from the adjusted series before the
spectrum calculation to enable the spectrum to reveal the
presence of the seasonal component.  If a series has strong
long-term trend movements, the low frequencies associated
with the long-term trend movements will have amplitudes
that dominate the spectrum.  Since the irregular component
of the seasonal adjustment decomposition is the detrended
seasonally adjusted series, X-12-ARIMA plots the spectrum
of the irregulars to help the user detect residual seasonality.

There are also some other statistical procedures,
including F tests, that can be used to detect residual
seasonality, but for series that are long enough, the spectral
graph is the most sensitive diagnostic to test for residual
seasonality.

2.3 Additional Diagnostics
Two different adjustments can both be successful in the

sense that their adjusted series have no residual seasonality
but one may be more attractive to some users but less
attractive to others.  For this reason, we believe that once we
have determined there is no residual seasonality, it is
important to look at additional diagnostics.

X-12-ARIMA's stability diagnostics are the sliding
spans and revision history diagnostics.  X-12-ARIMA also
contains diagnostics for month-to-month (or quarter-to-
quarter) percent changes to compare the smoothness of two
adjustments.  X-12-ARIMA also computes smoothness

measures for comparing the direct and indirect adjustment as
introduced by X-11-ARIMA.

Seasonal adjustments for any given month will change
as new data are introduced into the series.  The sliding spans
diagnostic computes separate seasonal adjustments for up to
four overlapping subspans of the series.  For more
infomation on sliding spans diagnostics, please see Findley,
Monsell, Shulman, and Pugh (1990), Findley et al (1998), or
the X-12-ARIMA Reference Manual (2001).

Another way to look at the revisions for a series is to
compare the initial adjustment for any given point (the
adjustment when that particular point is the latest point in the
time series) to the final adjustment for that point (the
adjustment when all the data in the time series is included in
the adjustment).  For more information on the revision
diagnostics, see Findley et al (1998) or the X-12-ARIMA
Reference Manual (2001).  For more information on graphs
of the revision diagnostics, see Hood (2001).  We will show
some examples of revision history graphs later in this paper.

X-12-ARIMA also contains the M and Q quality
diagnostics developed at Statistics Canada and included in
X-11-ARIMA.  These diagnostics are a set of eleven
numbers that help the users see possible problems in the
quality of the adjustments.  There were designed so that any
number greater than 1.0 signals a possible problem.  X-11-
ARIMA and X-12-ARIMA provide M's and Q's for both the
direct and indirect adjustment.  While these numbers are
useful in helping the user see some potential problems with
the adjustments, they were not designed to be used to choose
between the direct and indirect adjustment.  In other words,
if the M's and Q's are acceptable for both the direct and
indirect adjustment, we should not prefer one adjustment
because is has smaller M and Q values.

Next we will look at some examples showing how we
use diagnostics available in X-12-ARIMA.

2.4 Example–Residual Seasonality in the Aggregate Series
If the component series have no residual seasonality, are

we guaranteed that the indirect adjustment will have no
residual seasonality?  We will demonstrate that it is possible
to have two series with no apparent residual seasonality, and
yet still have residual seasonality in the aggregate series.

The use of inappropriate options in seasonal adjustment
software can result in bad adjustments.  Options that were
chosen in years past for a series may be suboptimal or
inappropriate for the series now.  And when we add together
several adjusted series produced from suboptimal options,
we can sometimes see residual seasonality in the aggregate
series.  This is why, at the Census Bureau, we believe it is
important to check the seasonal adjustment diagnostics every
year, including the diagnostics for the aggregate series as
well as for the component series.  Other agencies also stress
the importance of diagnostics for the direct and indirect
adjustment (Cannon, 2000).

For the purpose of an example, we have selected a
simple aggregate series.  The two composite series are real
series, and the Census Bureau publishes the aggregate series,
but not in the way described below.  For the published series,
all the diagnostics have been checked carefully.  We chose
seasonal filter lengths for one series that were inappropriate
given the diagnostics from the series.  Using these filters, it
is possible to create an aggregate series with residual
seasonality in the indirect adjustment.  



The last eight years of the two original (unadjusted)
composite series are shown in Figure 1.   

Figure 1.  Graph of the Two Components

The spectral graphs for the components are shown in
Figure 2. 

Figure 2.  Spectral Graphs for the Component Series

We would expect that seasonal frequencies at ¼ and ½
would have been suppressed in the spectrum of the
seasonally adjusted series.  In the first graph in Figure 2,
there is a slight seasonal peak on the right of the graph at ½.
However, the peak is not marked as "visually significant" by
X-12-ARIMA, nor is it the dominant peak of the graph.
Therefore, there is no strong signal of residual seasonality
for this series alone.  The spectral graph for the total of the
two series, shown in Figure 3, has a peak on the right side of
the graph at the frequency ½ of a cycle per quarter.  This

peak is marked by X-12-ARIMA as "visually significant"
and is the highest peak on the graph, signaling residual
seasonality.

Figure 3.  Spectral Graph of the Indirect Adjustment
for the Total

This adjustment is different from the indirect adjustment
obtained from default runs of X-12-ARIMA for the
component series.  The spectral graph for the default runs of
the component series is shown in Figure 4.  There are no
seasonal peaks whatsoever.

Figure 4.  Spectral Graph of the Indirect Adjustment,
using Default X-12 runs for the Component Series

2.5 Example–Revisions and Smoothness in the Aggregate
Series
The Census Bureau publishes US Single-Family

Housing Starts for four regions of the United States:
Northeast, Midwest, South, and West.  All four series have
somewhat similar seasonal patterns in that housing starts are
higher in the summer and lower in the winter.  Yet the drop
in housing starts in the winter months is more pronounced in
the Northeast and Midwest regions than in the South and
West regions.  Are the seasonal patterns similar enough for
the direct adjustment to be of better quality than the indirect
adjustment?  We will look at some diagnostics.  

We first checked the direct and indirect seasonal
adjustments for residual seasonality.  Both adjustments were
found to be acceptable, so the next step is to make some
decisions based on revisions. 

The direct adjustment, initial and final, is shown in
Figure 5, and the indirect adjustment, initial and final, is



shown in Figure 6.  The final seasonal adjustment is plotted
with the solid line.  Initial estimates for the adjustment are
shown as the dots.  We want the adjustment with smaller
revisions, i.e., with initial adjustments that are closer to the
final adjustment.  Both the direct and indirect adjustments
have some months at which there are large
revisions—February and October of 1997 are two examples.
However, there are more months with large revisions for the
direct adjustment—see for example early 1996, December
1996, and November and December 1997.  We prefer the
indirect adjustment for US Total Single Family Housing
Starts because of the smaller revisions.

Figure 5.  Revisions, Initial to Final, for the Direct
Adjustment for US Housing Starts

Figure 6.  Revisions, Initial to Final, for the Indirect
Adjustment for US Housing Starts

3. Features of the Ratio and Difference of Two
Adjustments of the Same Series
Now that we have looked at some ways to measure the

adequacy and quality of aggregate adjustments, we will look
at the difficulties involved in trying to compare the direct
and indirect adjustments by computing ratios or differences.

When comparing two adjustments of the same series by
looking at the series of their numerical ratios or differences,
seasonal adjusters and data users sometimes see seasonal
patterns. We will explain how this can happen even with
successful seasonal adjustments.

3.1 Ratios and Differences
In economic time series, it is a very common

phenomenon that the variations in the series increase as the
level of the series increases.  When we seasonally adjust
series with level-dependent variability, we use a
multiplicative decomposition model for seasonal adjustment.

To compare multiplicative adjustments, it is more natural to
look at ratios rather than their differences.  With series that
are adjusted additively, it is more natural to look at
differences.

3.2 Apparent Seasonality in the Ratios and Differences
It is simple to show algebraically that residual

seasonality in the ratio (and the difference if the adjustment
is additive) of two adjustments of the same series can be a
natural occurrence and not necessarily an indication of a
problem in either adjustment.  If you have two adjustments
of the same series, and if the seasonal factors of both
adjustments show very little evolution over time, then the
ratio of the two adjusted series will be seasonal.

We will focus on monthly adjustments in the equations.
Similar equations also hold for quarterly series.

Let  be the original series.  Let  be one series of
seasonal factor estimates.  Let  be a second series of
seasonal factor estimates.  In the case of direct and indirect
adjustment, one set of seasonal factors will be the indirect
seasonal factors obtained by dividing the original values by
the adjusted values from the indirect adjustment.

For multiplicative adjustment, the adjusted series, ,
is the original series divided by the seasonal factor estimates.
So from the two series of seasonal factors we have two
different adjustments:

   and   .

If both seasonal factor estimates are periodic, i.e.,
 and   for all t, then the ratio will

be periodic also, and we will see a seasonal pattern in the
ratio.  From 

 .     (1)

we obtain .
Let's look at a conceptual example.  Let's suppose the

seasonal factor for the first adjustment, , is 1.073 for
January in the most recent year, telling us the original
unadjusted quarter one numbers should be decreased by
7.3%.  Let's also assume that the estimates of the seasonal
factors for January are reasonably stable ( ), so
that the estimates for the first quarter of every year are
approximately 1.073.  Let's say that the seasonal factor for
the second adjustment, , is 1.064 for January in the most
recent year and the estimates of the seasonal factors are
stable.  Therefore, when we divide both seasonal factors into
the same original series, the ratio of the two seasonal factors
(see equation (1) above) for every first quarter is 1.064/1.073
= 0.992.  If the same kind of stability is found in the monthly
estimates for the other months, then we have a series of
ratios that are periodic and will observe a seasonal pattern in
the ratio.

Keep in mind that if we take the ratio of two seasonal
adjustments of the same series, the ratio most likely will be
close to 1.  Also remember that any seasonal adjustment is
an estimate, and therefore imprecise.  Movements in the ratio
of the two adjustments can be smaller in magnitude than the



uncertainty surrounding each of the seasonal adjustments.
Thus, in the example above, if possible error in the seasonal
factor estimates or seasonally adjusted data is close to one
percent, then the ratio 0.992 will not be statistically different
from 1.0.

For additive adjustment, the basic principles are the
same.  The adjusted series  is the original series minus the
seasonal factor estimates.  To compare the two adjustments,
we would take differences instead of ratios.

If both seasonal factor estimates are periodic, then the
difference of the seasonal factors will also be periodic and
therefore seasonal.

3.3 Example–Direct/Indirect Ratio for Total Exports
We will compare a default X-12-ARIMA direct

adjustment to an indirect adjustment for US Total Exports.

3.3.1 Indirect Adjustment for Total Exports
We looked at the spectral diagnostics in X-12-ARIMA

for evidence of seasonality.  The spectral graphs for the
original, unadjusted series and for the seasonally adjusted
series are shown in Figures 7 and 8.  

Notice that the spectrum of the original series in
Figure 7 has a somewhat broad peak at both seasonal
frequencies:  ¼ cycle per year and ½ cycle per year.  This is
an indication of changing seasonality present in the original
series. 

Figure 7.  Spectrum of the Original Series,
Quarterly Total Exports

Figure 8.  Spectrum of the Seasonally Adjusted Series,
Quarterly Total Exports

Notice that peaks at the seasonal frequencies are
suppressed by the seasonal adjustment as shown in Figure 8.
Though there is still a small peak at ½, it is not identified by
X-12-ARIMA as visually significant.  Therefore, we can
conclude there is no estimable seasonal effect still present in
the seasonally adjusted series.

 3.3.2 Direct Adjustment for Total Exports
The default X-12-ARIMA run for the direct adjustment

of Total Exports has a spectrum (not shown here) which has
no sign of residual seasonality.

3.3.3 Direct/Indirect Ratio
Figure 9 shows, in a year over year graph, the ratio of

the direct and indirect adjustment for Total Exports.  We can
see the seasonality in the ratio.  Generally, we see a first
quarter to second quarter increase, a third quarter to fourth
quarter decrease, and a fourth quarter to first quarter
increase.  The X-12-ARIMA diagnostics show signs of
estimable seasonality, among them, the F-test for stable
seasonality was 33.1.  The spectral graph shown in Figure 10
also shows signs of moving seasonality in the ratio—broad
peaks around ¼ and ½.

Note that the range of the ratios is very small in
magnitude compared to the original series.

Figure 9.  Year Over Year Graph,
Ratio between the Direct and Indirect Adjustments

Figure 10.  Spectral Graph, 
Ratio between the Direct and Indirect Adjustments

Will we always find the phenomenon that diagnostics
show possible "residual seasonality" in the ratio?  We can
very easily change the seasonal filter lengths for the direct
adjustment.  If we change the filter lengths used by
X-12-ARIMA for some of the quarters in the direct



adjustment of Total Exports, we can change the ratio
between the direct and indirect adjustment. 

Notice in Figure 11 below that the ratio has changed
from the ratio shown in Figure 9.  Notice also that the range
of the ratios has been reduced.  The X-12-ARIMA
diagnostics show fewer signs of estimable seasonality.  The
F-test for stable seasonality was 12.6.  The spectral graph in
Figure 12 also shows signs of reduced estimable seasonality
in the ratio.  Now there is not a peak at the frequency ½ and
a lower, flatter peak at ¼.

Figure 11.  Year Over Year Graph, 
Ratio between the Direct and Indirect Adjustments,

Modified Direct Adjustment

Figure 12.  Spectral Graph, Ratio between the Direct
and Indirect Adjustments, Modified Direct Adjustment

4. Conclusions
Diagnostics for the indirect adjustment of the aggregate

can be very helpful in determining the best options for the
component series. 

When two competing estimates of the seasonal factors
of a time series are both rather stable, in the sense that each
calendar month's (or calendar quarter's) factor changes little
from one year to the next, then the factors from the two
adjustments will differ in a consistent way.  In this case, the
ratio of the two multiplicative seasonal adjustments will
necessarily have a seasonal component.  

A basic problem with ratios of adjusted series is that
their movements are often on the same scale as the "noise"
level in the series, in which case the movements can fail to
have statistical significance. 
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