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views expressed on statistical, methodological, 
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1. Background 
 
Progress in seasonal adjustment depends on the 
development not only of methods that better 
account for the various components of time series, 
but also the development of better diagnostics.  A 
successful seasonal adjustment can depend as 
much on the diagnostics as on the methods.  In this 
paper, we try to identify promising diagnostics for 
model-based seasonal adjustment. 
 
Currently there are a variety of diagnostics for 
model-based adjustments available including 
model fit diagnostics and stability diagnostics.  In 
this paper we investigate which diagnostics are 
useful to determine the quality of the seasonal 
adjustment.  We use simulated series to assess 
which diagnostics are associated with accuracy of 
an adjustment. 
 
While most of this research should be applicable to 
a model-based adjustment performed by 
any software, we focus on SEATS adjustments.   
SEATS (Signal Extraction in ARIMA Time Series) 
is a program developed by Agustín Maravall and 
Victor Gómez to seasonally adjust time series 
using ARIMA model-based signal extraction 
techniques.  SEATS uses signal extraction with 
filters derived from an ARIMA-type time series 
model that describes the behavior of the series.  
This method is based on work by Hillmer and Tiao 
(1982) and Burman (1980), among others.  (Also, 
see Maravall (1993) and Gómez and Maravall 
(1997).) 
 
The Census Bureau has a version of its seasonal 
adjustment package, X-12-ARIMA, which has 
access to the SEATS algorithms.  The new 
program is temporarily called X-12-SEATS.  The 
advantage of X-12-SEATS is that it has many of 
the diagnostics available in X-12-ARIMA along 
with all of the diagnostics available in SEATS.  
The main difference between SEATS and the 
SEATS module of X-12-SEATS is that SEATS 

uses conditional likelihood for estimating AR 
models and X-12-SEATS uses an exact maximum 
likelihood.  X-12-SEATS is still under 
development and is not yet being released by the 
Census Bureau.  For more information, see the 
paper by Monsell, Aston, and Koopman (2003).  
For this research we used X-12-SEATS. 
 
1.1 Diagnostics 
 
X-12-SEATS includes two stability diagnostics:  
sliding spans and revision history diagnostics.  The 
sliding spans diagnostics were developed at the 
Census Bureau (see Findley, Monsell, Shulman, 
and Pugh (1990) and Findley, Monsell, Bell, Otto, 
and Chen (1998)).  The purpose of the sliding 
spans diagnostics is to compare adjustments from 
overlapping subspans of the series. 
 
The sliding span procedure looks at up to four 
spans of data.  All the spans are the same length, 
where length is determined by the seasonal moving 
average parameter.  The last span ends at the last 
point in the series.  The second-to-last span starts 
(and ends) one year earlier than the last span and so 
on.  If there are not enough data for four spans, the 
program will calculate three spans or two spans, 
when possible.  X-12-SEATS calculates seasonal 
adjustments for each span of data separately, 
resulting in up to four different estimates of the 
seasonal adjustment for a large number of points.  
It looks at the maximum percent difference 
between the estimates.  Maximum percent 
difference is calculated for the seasonally adjusted 
series, the month-to-month percent change in the 
seasonally adjusted series, and the seasonal factors. 
 
The span length for a SEATS adjustment is 
determined by the seasonal moving average 
parameter.  Span lengths are short when the 
estimated parameter is small and long when it is 
close to one.  When the span length is too long, it 
can be impossible to obtain even two spans for 
comparison.  If there is no seasonal moving 
average parameter, the span length is four years. 
 
The revision history procedure computes a 
sequence of adjustments from truncated sets of 
data.  An initial or concurrent adjustment is 
calculated at time t using data up to time t.  A final 
adjustment is also calculated at time t using the full 
series of data.  This allows the user to compare 



 

 

revisions from the initial estimate to the most 
recent estimate. Revisions can be quantified by the 
mean and maximum absolute percent difference 
between the initial and final estimate for the 
seasonal adjustment and between the initial and 
final estimate of the month-to-month percent 
change for the seasonal adjustment. 
 
X-12-SEATS estimates the sample autocorrelation 
function, sample partial autocorrelation function 
and the Ljung-Box Q statistics for lags one through 
36 of the regARIMA model residuals.  The Ljung-
Box Q is a portmanteau test, that is, the Q statistic 
corresponding to the kth autocorrelation tests 
whether the first k autocorrelations are zero, as 
white noise.  At low lags, Q follows a chi-square 
distribution; however, at large lags it does not 
follow a chi-square distribution, so we ignore Q25-
Q36 in our analysis.  See Ljung and Box, (1978) for 
more details. 
 
X-12-SEATS also provides a test for normality of 
the regARIMA model residuals.  The test for 
normality of the residuals has two parts:  Geary’s A 
and kurtosis.  Newer versions of X-12-SEATS also 
include a test for skewness.  
 
SEATS uses an “overestimation” and 
“underestimation” diagnostic for detecting residual 
seasonality (Maravall, 2003).  Overestimation of a 
component indicates that too much variation has 
been assigned to that component.  Underestimation 
of a component indicates that its estimate does not 
capture all of the variation.  This diagnostic is 
calculated for the trend, irregular, seasonal factors, 
and the seasonally adjusted series.  This diagnostic 
was shown to be negatively biased, toward 
indicating underestimation (Findley, Wills, Aston, 
Feldpausch, Hood, 2003). 
 
Note that for model-based adjustments some 
diagnostics in X-12-ARIMA are not available.  For 
a SEATS adjustment you cannot get the F-tests for 
stable and moving seasonality.  Also, the M and Q 
Monitoring and Quality diagnostics developed by 
Statistics Canada are not available.  There is no 
diagnostic comparable to M7 for determining 
whether or not a series is seasonal. 
 
2 Methods 
 
We used two types of simulated series to evaluate 
some of the diagnostics available in X-12-SEATS.  
We used a set of airline simulations and another set 
of simulations that were based on real-life series.  
We used these airline series to make sure that 

SEATS and the model-based diagnostics 
performed how we expected them to.  We then 
used the simulations based on real-life series to 
determine how well the diagnostics performed. 
 
2.1 Data used 
 
We simulated 1,000 series based on the Box-
Jenkins airline model.  This model is of the form 
 

(1-B)(1-Bs)Zt=(1-θB)(1-ΘBs)εt 
 

where Zt is the logarithm of a seasonal time series, 
s is the number of observations per year (s≥2), B is 
the backshift operator, and εt is a random variable 
that is distributed as white noise.  We simulated 
series with s=12, monthly time series.  For each θ 
and Θ considered, with a fixed value for the 
variance of εt for all series, we obtained the 
ARIMA models for the trend, seasonal and 
irregular components produced by SEATS’ 
canonical decomposition of the airline model.  
Then we simulated independent Gaussian series 
from each component’s model (e.g. white noise 
with the canonical variance for the irregular 
component).  The sum of series from the three 
component’s simulations yields an airline model 
series with the prescribed parameters whose true 
seasonal decomposition components are known.  
The component series were exponentiated to 
achieve a multiplicative seasonal decomposition.  
For our simulations, we used values θ and Θ 

randomly chosen between 0 and -0.988.   
 
We also simulated some series based on real-life 
series.  We used 267 published series from the U.S. 
Census Bureau’s Import/Export series to create 
1400 simulated series.  The Import/Export series 
represent a wide range of possible seasonal 
patterns.  We used X-12-SEATS to generate 
trend/cycle, seasonal, and irregular components for 
the Import/Export series from both X-11 and 
SEATS adjustments.  The trend/cycle, seasonal 
factors, and irregular from different series were 
then combined together to form a new series.  We 
will refer to these series as the Import/Export 
simulations.  For a more detailed explanation of the 
methods we used to simulate these series, see 
Hood, Ashley and Findley (2000).  All simulated 
series had length 156. 
 
2.2 Judging Accuracy 
 
For simulated series it is possible to judge the 
accuracy of the seasonal adjustment based on how 
close X-12-SEATS comes to the true seasonal 



 

 

adjustment.  For the series simulated by combining 
known seasonal, trend, and irregular components, 
we know what the true seasonal adjustment should 
be.  For these series, we can see how close 
X-12-SEATS comes to the truth by looking at the 
relative mean absolute deviation (RMAD) 
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where N is the number of data points in the series, 

tx  is the actual seasonally adjusted series, and 

ˆtx is the estimated seasonally adjusted series. 
 
3 Results 
 
As we expected, X-12-SEATS did a very good job 
with the airline simulations.  Table 1 shows the 
mean RMAD for both types of simulations.  The 
RMAD was smaller for the airline series.  The 
results for the airline data given below are for 
adjustments using the model determined by 
TRAMO.  The results for the airline data with the 
airline model specified (and with X-12-SEATS- 
estimated parameters) and the airline data with the 
TRAMO model were very similar.  The mean and 
standard deviation were the same when rounded to 
two decimal places.  We expected the 
Import/Export simulations to be more like real-life 
series and that X-12-SEATS would have a more 
difficult time with these series. 
 
Table 1 Average RMAD for Simulated Series 
Simulation Mean (Std. Dev) Range 
Airline 0.15 (0.05) 0.01 -   0.70 
Import/Export 2.55 (2.33) 0.00 - 27.61 
 
In the following sections, we discuss results for 
individual diagnostics. 
 
3.1 Sliding Spans 
 
To evaluate the stability diagnostics, we used only 
the Import/Export simulations.  We only 
considered series that had seasonal peaks in the 
spectrum of the original series.  For series of length 
13 years, like ours, there will be four spans to 
compare only when Θ < 0.695.  We restricted our 
analysis to the 45.8% of the simulations whose Θ 
satisfies this inequality.  Series with less than four 
spans were more likely to be inaccurate and pass 
sliding spans than series with four spans.  This is to 
be expected, since there are fewer points to 

compare.  For this analysis, we only considered 
series where sliding spans had four spans of data.     
 
For a series to pass sliding spans, (a) the 75th 
percentile of the maximum percent difference for 
the seasonal factors should be less than three and 
(b) the 60th percentile of the maximum percent 
difference for the month-to-month percent change 
should be less than three. 
 
For a subset of series, we found that the sliding 
spans diagnostic is strongly correlated with 
accuracy of the adjustment.  However, sliding 
spans did not perform equally well for all types of 
models. 
 
For series that do not have a seasonal model all the 
seasonal factors should be the same.  These series 
with nonseasonal models should all pass sliding 
spans, since the maximum percent differences 
should all be zero.  For these series, the sliding 
spans results are not informative since the seasonal 
factors should be the same for all the spans.  We 
eliminated series with nonseasonal models from 
our analysis. 
 
For series without a seasonal difference, sliding 
spans also did not perform well.  Most of the time, 
the maximum percent differences were close to 
zero, similar to the nonseasonal models.  The 
issues for series with models without a seasonal 
difference are similar to those of nonseasonal 
models, the seasonal adjustment does not change 
very much across the spans.   
 
Sliding spans performed best when there was a 
seasonal difference in the model.  Figure 1 shows 
the response of the seasonal factors versus RMAD 
for series having a model with a seasonal 
difference.  The Pearson correlation between the 
RMAD and the sliding spans 75th percentile of the 
seasonal factors was 0.77.  Figure 2 shows 
response of the month-to-month percent change in 
the seasonal factors versus RMAD for series 
having a model with a seasonal difference.  The 
Pearson correlation between the RMAD and the 
sliding spans 60th percentile of the month-to-month 
percent change in the seasonal factors was 0.70. 
 
Note that all of our simulations began in January 
and ended in December.  This meant that every 
month was represented in the spans the same 
number of times.   
 



 

 

 
Figure 1 Response of the seasonal factor spans to 
accuracy  
 

 
Figure 2 Response of the month-to-month percent 
change of the seasonal factor spans to accuracy  
 
3.2 Revision History 
 
The revision history successfully ran for 54.9% of 
the Import/Export simulations.  Most of the time 
when revision history did not run, it was due to the 
model not converging at one or more points during 
the history run.  The revision history diagnostics 
are also correlated with accuracy.  Unlike sliding 
spans there is no cut-off value to indicate that a 
series passed or failed revisions history. 
 
Similarly to sliding spans, revision history 
performed best for series that had models with a 
seasonal difference.  Figure 3 shows the average 
absolute revisions of the seasonally adjusted series 
that had a seasonal difference in the model versus 
the RMAD.  The correlation between the RMAD 
and the average absolute revisions of the seasonally 
adjusted series was 0.80.  Figure 4 shows the 
average absolute revisions of the month-to-month 

percent change of the seasonally adjusted series 
with a seasonal difference in the model verse the 
RMAD.  The correlation between the RMAD and 
the average absolute revisions of the month-to-
month percent change of the seasonally adjusted 
series was 0.80. 
 

 
Figure 3 Response of the average absolute 
revisions of the seasonally adjusted series 
(revisions history) to accuracy  
 

 
Figure 4 Response of the average absolute 
revisions of the month-to-month changes (revisions 
history) to accuracy  
 
3.3 Ljung-Box Q 
 
One of the model-based diagnostics that we 
examined was the Ljung-Box Q.  To evaluate this 
diagnostic, we first used the simulated airline series 
with the airline model specified.  We allowed 
X-12-SEATS to estimate the parameters.  
X-12-SEATS calculates Q1 through Q36 for the 
regARIMA model residuals.  These tests are each 
conducted at a 0.05 level.  Normally in a situation 
where there are multiple tests, one would like to 



 

 

take into consideration the issue of multiple 
comparisons.  The Ljung-Box Q is complicated by 
the fact that the statistics are correlated.  For 
example, if the ACF has a large peak at lag 16, this 
could cause Q16 through Q20 to fail.  For this reason 
some people feel that it is best to look at only one 
Q.  To this end, SEATS only computes Q24. 
 
We only considered Q1-Q24.  We decided to 
concentrate on Q24 since this is the lag that is 
displayed in the SEATS output, and Q12 since 12 is 
our seasonal frequency.  For lags less than or equal 
to 24, Table 2 shows the percentage of series where 
at least one Q failed, Q12 failed, and Q24 failed.  
Table 2 shows that the airline series failed Q12 and 
Q24 at approximately the expected 5% of the time.  
For the airline series, the median RMAD for those 
that failed Q12 (Q24) and those that did not fail Q12 
(Q24) was the same, 0.15.  Since the airline series 
produced the results we expected, we examined the 
Import/Export simulations.  Table 2 also shows the 
results for the Import/Export simulations.   
 
Table 2 Percentage of series where Q failed 
Simulation 1+ Failing Q Q12 Q24 
Airline 30.8   5.8   5.3 
Import/Export 75.0 11.5 14.7 
 
Table 3 Median RMAD for Import/Export 
Simulations 
 Q12 Q24 
Failed 2.17 2.14 
Did not fail 1.94 1.91 
 

 
Figure 5 Box-plots of the RMAD for the series 
where Q12 failed and series where it did not fail. 
 
Table 3 shows the median RMAD for those 
Import/Export simulations that failed Q12.  Figure 5 
shows a box-plot of the RMAD for those series that 

failed Q12 and those that did not.  The five series 
with the highest RMAD all failed Q12.  However, 
there were many series that did not fail Q12 and had 
high RMADs.  Figure 6 shows a box-plot of the 
RMAD for those series that failed Q24 and those 
that did not.   
 

 
Figure 6 Box-plots of the RMAD for the series 
where Q24 failed and series where it did not fail. 
 
3.4 Normality Test for Residuals 
 
The test for normality of the RegARIMA model 
residuals was conducted at the 1% level.  For the 
airline simulations, the test for normality of the 
residuals failed in 2.9% of the series.  For the 
Import/Export simulations, the test for normality 
failed in 4.9% of series. 
 

 
Figure 7 RMAD for series where the residuals 
failed the normality test and for series where the 
residuals did not fail the normality test. 
  
The median RMAD for series that failed the 
normality test was 2.80.  The median RMAD for 
series that did not fail the normality test was 2.14.  



 

 

Figure 7 shows a box-plot of the RMAD for the 
series failing the normality test and for the series 
that did not fail the normality test.  Based on the 
box-plot, it would be difficult to use the normality 
diagnostic to determine the accuracy of the 
adjustment.  Both sets of simulations confirm that 
the failing the normality test is not a good indicator 
that the seasonal adjustment is inaccurate. 
 
3.5 Overestimation/Underestimation Diagnostic 
 
For the overestimation/underestimation 
diagnostics, we looked at the estimate minus the 
estimator.  A negative value indicates 
underestimation; a positive value indicates 
overestimation.  We would expect negative values 
for this diagnostic to be negatively correlated with 
the RMAD and positive values to be positively 
correlated with the RMAD.  We examined this 
diagnostic using the airline simulations. 
 
Figure 8 shows the overestimation/ 
underestimation diagnostic for the trend versus the 
RMAD.  We looked at the correlation between 
negative values of the trend 
overestimation/underestimation diagnostic and the 
RMAD and the positive values and RMAD 
separately.  There was no correlation between 
either the negative or positive values of the trend 
overestimation/underestimation diagnostic and the 
RMAD.  For the series where this diagnostic was 
calculated, only 27.1% of the series had positive 
values. 

 
Figure 8 Trend Overestimation/Underestimation 
Diagnostic versus RMAD 
 
Figure 9 is a graph of the irregular 
overestimation/underestimation diagnostic versus 
the RMAD.  This diagnostic should be centered 
around zero.  The graph clearly shows that this 
diagnostic is biased.  Only 0.9% of the series had a 

positive value for the irregular 
overestimation/underestimation.  There was some 
correlation between the negative values of this 
diagnostic and the RMAD; however, it was in the 
wrong direction.  The correlation between negative 
values of the irregular overestimation/ 
underestimation diagnostic and the RMAD was 
0.38. 

 
Figure 9 Irregular Overestimation/Underestimation 
Diagnostic versus RMAD 
 

 
 
Figure 10 Seasonal Factor Overestimation/ 
Underestimation versus RMAD (note that this 
graph has a different scale than the other 
overestimation/underestimation graphs) 
 
Figure 10 is a graph of the seasonal factor 
overestimation/underestimation diagnostic versus 
the RMAD.  There was some correlation between 
the negative values of this diagnostic and the 
RMAD.  There was also correlation between the 
positive values of this diagnostic and the RMAD.  
The correlation between negative values of the 
seasonal factor overestimation/underestimation 
diagnostic and the RMAD was –0.21; the 



 

 

correlation between the positive values and the 
RMAD was 0.26.  For series where this diagnostic 
was calculated, 29.1% of the series had positive 
values. 
 
We decided to investigate the seasonal factor 
overestimation/underestimation diagnostic a little 
more using the Import/Export simulations.  There 
was no correlation between the negative values of 
this diagnostic and the RMAD.  There was a small 
correlation between the positive values of this 
diagnostic and the RMAD, 0.16 (p-value=0.038).  
For series where this diagnostic was computed, 
24.5% of the series had a positive value.  In 
general, the overestimation/ underestimation 
diagnostics did not do a good job indicating which 
series had an accurate adjustment. 
 
4 Conclusions 
 
The stability diagnostics are better indicators of 
accuracy of the adjustment than the model fit 
diagnostics.  We recommend using the stability 
diagnostics to determine whether or not an 
adjustment is of acceptable quality.  However, a 
problem with the stability diagnostics is that for 
some series it is impossible to obtain the stability 
diagnostics.  For sliding spans, there may not be 
enough data to obtain the minimum of two spans.  
For revision history, the model may not converge 
at all of the points.   
 
This paper focuses on using diagnostics to 
determine the quality of an adjustment.  In the 
future, we would like to investigate which 
diagnostics are useful to look at when you are 
comparing two different adjustments.  We also 
intend to examine the unbiased modifications of 
the overestimation/underestimation presented in 
Findley, McElroy, Wills (2004). 
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